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Abstract—As large scale energy management strategies have
gradually shifted the focus from the producer to the consumer
side, buildings are starting to play a critical role in the efficient
management of the electrical grid. Moreover some buildings have
become prosumers by integrating local generation capabilities
from renewable sources thus inducing additional complexity
into the operation of the energy systems. As alternative to
conventional energy consumption modelling techniques, a black-
box input-output approach has the ability to capture underlying
consumption patterns and trends while making use of the
large quantities of data being generated and recorded through
dense instrumentation of the buildings. The paper discusses
and illustrates an approach to apply deep learning techniques,
namely Recurrent Neural Networks implemented by means of
Long Short-Term Memory layers, for load forecasting. We focus
on large commercial buildings which can be better managed
by central operators and where better models can result in
significant energy savings and broad economic and social impact.
The case study is illustrated on two university buildings from
temperate climates over one year of operation using a reference
benchmarking dataset for replicable results. The obtained results
show promise and can be further used in reliable load manage-
ment algorithms with limited overhead for periodic adjustments
and model retraining.

Index Terms—smart buildings, load forecasting, computational
intelligence, long short-term memory

I. INTRODUCTION

Global urbanisation tendencies have led to significant engi-
neering challenges for the development and management of the
built environment. Smart cities are one of the salient examples
of a new paradigm that brings together sensing, computing,
communication and control to improve the operations of
various systems and the well-being of its inhabitants. One
of the critical areas of development within a smart city is
in the energy sector and the electrical grid, thereby assuring
a reliable, clean and cost-effective energy supply to ever
increasing urban needs. More specifically our work focuses
on large commercial buildings which play a critical role as
consumers, prosumers or balancing entities for grid stability.
As such, having accurate models that capture underlying
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patterns and trends driving energy consumption can be used to
forecast load profiles and improve high level control strategies.
The main objective is to alleviate existing challenges toward
grid stability and environmental benefits by leveraging state-
of-the-art algorithms.

As building energy use is steadily increasing and has
reached almost 40% of primary energy use in many devel-
oped countries [1], modern buildings make use of extended
instrumentation networks to measure and control many en-
ergy related parameters for daily operation. The resulting
data streams are handled by information systems such as
Building Management Systems (BMS) and stored in local or
cloud databases pending further processing or on-line decision
making. In existing and older buildings replacing conventional
energy meters with smart meters, over wired or wireless
communication networks, provides a cost-effective way to
collect the relevant data. Based on improved availability and
reduced data collection effort for energy measurements time
series there are multiple approaches to capture accurate models
for energy prediction and control.

As an example, in the recent period, statistical learning
methods have seen increased adoption in both research and
industry, driven mainly by data availability and exponentially
increasing computing resources, including cloud systems.
Neural networks are one salient example of statistical learning
technique that has shown good results in many types of
applications. This is valid for both classification tasks, as
well as regression tasks where the objective is to predict an
output numerical value of interest. Deep learning techniques
build upon the well studied neural network architectures, with
increased complexity. This occurs by adding many hidden
layers in the overall network as well as many data processing
units of various types at each layer of the network. Initially
deployed through industry driven initiatives in the areas of
multimedia processing and translation systems, other technical
applications currently stand to benefit from the availability of
open-source algorithms and tools.

The focus of our work is on large commercial buildings as
opposed to an equally large market in the individual dwellings
and residential sector. This has to do mainly with the economic
incentives and return of investment related to energy efficiency
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projects where small percentage gains on large absolute values
of energy use become more attractive to the building operator
or owner. The opportunities to finally deploy such intelligent
algorithms become greater at scale.

Main contributions of the paper can be thus summarised:
• illustrating a deep learning approach to model large

commercial building electrical energy usage as alternative
to conventional modelling techniques;

• presenting an experimental case study using the chosen
deep learning techniques enabling reliable forecasting of
building energy use.

The rest of the paper is structured as follows. Section II
discusses related work in the area of energy consumption
modelling of direct relevance to our proposed contributions.
Section III presents the theoretical background of Recurrent
Neural Networks (RNN) implemented with layers of Long
Short-Term Memory (LSTM) units and their application for
this task. A case study is described in Section IV by applying
the deep learning techniques on a reference benchmarking
dataset for two large commercial buildings. The main find-
ings are also discussed. Section V concludes the paper and
discusses implementation paths of the derived models.

II. RELATED WORK

The application of statistical learning techniques for energy
modeling has seen an increased adoption in the recent period.
Three factors are identified for this trend:

• better availability of good quality datasets and com-
putational resources that enable extensive testing and
validation of the proposed methods;

• commercial and open-source algorithm libraries and soft-
ware with suitable documentation and examples for a
wider audience;

• increased collaboration between algorithm, computing
and control experts and domain specialists in the energy
and civil engineering fields; this has influenced the design
of new deep learning architectures customised mostly for
particular applications.

In [2] the authors focus on two deep learning techniques for
building energy consumption namely Conditional Restricted
Boltzmann Machines (CRBM) and Factored Conditional Re-
stricted Boltzmann Machines (FCRBM). The results are illus-
trated in comparison to artificial neural networks and support
vector machines (SVM) as well as recurrent neural networks.
It is shown that for many of the test scenarios: aggregated
and submetering data as well as different time horizons and
resolution, the investigated methods offer better performance
in terms of RMSE on the prediction horizon. The authors of
[3] present an end-to-end deep learning approach for load
forecasting of commercial buildings by combining stacked
autoencoders (SAE) with extreme learning machines (ELM).
SAE extracts the relevant features from the input dataset while
ELM works as the predictor. The advantages of this particular
method are justified in terms of achieving directly the output
weights of the networks without iterative backpropagation.

Two RNN models based on LSTM units for building energy
consumption are evaluated in [4]. An important finding of
this study is that RNN methods tend to perform better than
others when applied to aggregated energy data and long term
dependencies are more difficult to identify. Also the authors
use the resulting model to perform missing value imputation
on the original time series.

Building on previous own work, in [5] ARIMA and con-
ventional ANN where tested on a locally collected energy
consumption dataset. The study of various ANN configurations
for load forecasting of buildings was carried out in [6]. The
subsequent models can be then integrated in a decision support
system as in [7].

III. ELECTRICAL LOAD FORECASTING USING
DEEP NEURAL NETWORKS

Due to their extensive utility and good performance, recur-
rent neural networks (RNN) are becoming a very important
tool in situations represented by sequences of ”events” with
events representing a data point. Recurrent Neural Networks
can perform the same computations for all elements in a
sequence of inputs and, for example, they can evaluate non-
linear time series problems, such as energy consumption, and
provide forecasts. Recurrent Neural Networks have a structure
that is different than the frequently applied statistical learning
algorithm - artificial neural networks (ANN) and use back-
propagation through time (BPTT) [8] or real-time recurrent
learning (RTRL) [9] algorithm to compute the gradient descent
after each iteration. In other words, RNN is a type of artificial
neural network that adds additional weights to the network to
create cycles into the network graph in order to control the
internal state of the network.

A. Long Short Therm Memory (LSTM)

Long Short-Term Memory neural networks are a particular
type of recurrent neural networks. As was mentioned before
recurrent neural networks are usually trained using either
BPTT or RTRL algorithm, but several researchers showed
that training using these methods usually fails because of
exploding gradient. LSTM [10] is a recurrent neural network
that offers support for time series and sequence data in a
network, and help enhance gradient flow over long sequences
during training. LSTM addresses the gradient problem through
incorporating self-connected ”gates” in the hidden units. In a
LSTM network the flow of information through the network
is handled by reading, writing and removing information from
the memory [11], [12].

Figure 1 illustrates the flow of a time series x of length n,
(n ∈ N) through an LSTM layer. In this diagram, h stands for
output, also hidden state, and c stands for cell state. The first
LSTM hidden unit takes the initial state of the network, (c0,
h0) and also the first time step of the sequence x1 and after
that computes the first output h1 and the updated cell state c1.
This process repeats every time step.

The state of the LSTM layer consists of the output state
(h) and the cell state (c). On the one hand, the output state
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Fig. 1: LSTM layer diagram

at time step t contains the output of the LSTM layer for
this time step, and on the other hand the cell state contains
information learned from the previous time steps. At each
iteration, the layer writes information to the cell state or erases
information from it, where the layer controls these updates
using ”gates”. The ”gates” represent components that control
the cell state and the output state of the layer. There are four
such components: the input gate (i) which controls the level
of cell state update, the layer input (g) which adds information
to cell state, the forget gate (f) which controls the level of
cell state reset and the output gate (o) which controls the level
of cell state added to output state [12].

The diagram in Figure 2 illustrates the data flow at a specific
time step t inside of a hidden unit.
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Fig. 2: LSTM hidden unit diagram

A LSTM layer has the following learnable parameters: the
input weights (W ), the recurrent weights (R) and the bias (b).
W,R and b represents matrices that consists of concatenations
of the input weights, recurrent weights, and the bias of each
component. The structure of each matrix is the following:

W =


Wi

Wf

Wg

Wo

 , R =


Ri

Rf

Rg

Ro

 , b =


bi
bf
bg
bo

 ,

where i, f , g and o represent the input gate, forget gate, layer
input and output gate, respectively.

The state of the cell memory at time step t is updated
recursively using the following formula [10]:

ct = ft ⊗ ct−1 ⊕ it ⊗ gt, (1)

where ⊗ stands for Hadamard product and the formulas for
every component at time step t are:

ft = σ(Wfxt +Rfht−1 + bf ),

it = σ(Wixt +Riht−1 + bi),

gt = tanh(Wgxt +Rght−1 + bg),

(2)

σ stands for the sigmoid function and tanh for hyperbolic
tangent function.

The output state at time step t is given by the output gate
(o) which implements a read function combined with the cell
state (c). The process is described by the following formula:

ht = ot ⊗ tanh(ct), (3)

where
ot = σ(Woxt +Roht−1 + bo). (4)

B. Benchmarking data sets

The current study presents a LSTM modelling application
using different neural network configurations and the assess-
ment of performance between all forecasting LSTM models.

The data sets with active power load used for the experi-
ments are taken from the Building and Urban Data Science
(BUDS) Group at the National University of Singapore -
http://www.budslab.org and are part of a data col-
lection of several non-residential buildings, proposed for per-
formance analysis and algorithm benchmarking [6], [13].

Data was collected every 60 minutes over a 1-year period
in two educational buildings with an approximate surface area
of 9.000 square meters. The chosen buildings for the study
are from university campuses in Chicago (USA) and Zurich
(Europe). After the pre-processing of the noise and missing
data in the initial data set using the median filter technique
two time series data sets were obtained with approximately
8.670 data points each.

Choice of the target buildings was done in conjunction
to a local campus building at our university to which a
data collection study is currently underway. The determining
factors were size - medium to large building, mixed usage
pattern - office, laboratory space, some classrooms and non-
extreme temperate climate with four distinct seasons [6].

IV. EXPERIMENTAL RESULTS

The input time series for network estimation and testing are
illustrated in Figure 3. The upper plot represents the active
energy consumed by the university building from Zurich over
the reference period and the other one by the university from
Chicago.

For this case study we propose various configurations for
LSTM neural networks in order to forecast the load in this
types of buildings. The goal was to have both an evaluation
of the performance metrics of the different structure as well
as a computational assessment on the target data set.

The presented work considers the standard LSTM algorithm
for load forecasting methodology. All defined networks are
standard LSTM neural networks with one sequence input

494



01-Jan-2013 00:00:00 01-Apr-2013 00:00:00 01-Jul-2013 00:00:00 01-Oct-2013 00:00:00 01-Jan-2014 00:00:00
Time

60

80

100

120
Ac

tiv
e 

po
w

er
 [k

W
]

Zurich

01-Jan-2015 00:00:00 01-Apr-2015 00:00:00 01-Jul-2015 00:00:00 01-Oct-2015 00:00:00
Time

70

75

80

85

90

Ac
tiv

e 
po

w
er

 [k
W

]

Chicago

Fig. 3: Data sets used for LSTM estimation and testing

layer, one LSTM layer, one fully connected layer and one
regression layer. Each network has a different configuration
represented by the number of the hidden units from the LSTM
layer. Based on this, the following network structures were
implemented:

• C0: 5 hidden units in the LSTM layer;
• C1: 25 hidden units in the LSTM layer;
• C2: 50 hidden units in the LSTM layer;
• C3: 100 hidden units in the LSTM layer;
• C4: 125 hidden units in the LSTM layer;
• Z0: 5 hidden units in the LSTM layer;
• Z1: 25 hidden units in the LSTM layer;
• Z2: 50 hidden units in the LSTM layer;
• Z3: 100 hidden units in the LSTM layer;
• Z4: 125 hidden units in the LSTM layer,

where Z stands for the Zurich and C for the Chicago.
Regarding the training process, the Adaptive Moment Esti-

mation (ADAM) algorithm was used. ADAM is an algorithm
for first order gradient based optimisation of stochastic ob-
jective functions with momentum. The algorithm computes
learning rates that can adapt in a automatic manner to the loss
function which is optimised, for each parameter from estimates
of first and second moments of the gradients. It maintains an
element-wise moving average of the parameter gradients and
their squared values, respectively [14].

In the literature is demonstrated that the algorithm is
efficient in terms of computational time, has little memory
requirements and is suitable for large data problems.

Regarding the learning rate, after few tests, it was concluded
that the right solution is the following: the initial learning rate
was set to 0.1 and after that, the learning rate was reduced by
a factor of 0.2 every 100 epochs. Also, the properly maximum
number of epochs for training was chosen to be 200.

Figure 4 and 5 presents the prediction response by the
LSTM neural network with 50 hidden units in the LSTM
layer versus real data for Chicago building and Zurich build-
ing, respectively. The plots demonstrate that the forecasting
performances of the LSTM models for the testing data sets is
very good.

To evaluate the prediction models, three performance met-
rics were used: Mean Squared Error (MSE), Root Mean
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Fig. 4: Prediction result by LSTM neural network with 50
hidden units (Chicago building)
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Fig. 5: Prediction result by LSTM neural network with 50
hidden units (Zurich building)

Squared Error (RMSE) and Mean Absolute Percentage Error
(MAPE). The metrics are listed in the following equations:

MSE =

n∑
1

(Yt − Y pt)
2

n

RMSE =

√√√√ n∑
1

(Yt − Y pt)2

n

MAPE =
1

n

n∑
1

∣∣∣∣Yt − Y pt
Yt

∣∣∣∣ 100
(5)

where n represents the number of samples, Yt and Y pt stand
for the actual data and predicted data, respectively.

Table I and Table II show the computational time, MSE,
RMSE and MAPE errors on testing data sets for different
number of hidden units in the LSTM layer.

TABLE I: Forecasting performance of each LSTM neural
network (Chicago building)

C0 C1 C2 C3 C4
Time(s) 75 93 143 247 330
MSE 0.6295 0.6132 0.5553 0.7486 0.9555
RMSE 0.7934 0.7831 0.7452 0.8652 0.9775
MAPE(%) 0.5623 0.5091 0.4945 0.5535 0.8177

From the testing performance point of view, as shown in
Table I and II, the smallest prediction errors and best precision
for both the Chicago building data and Zurich building data,
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Fig. 6: Training Performance a) Worst b) Best

TABLE II: Forecasting performance of each LSTM neural
network (Zurich building)

Z0 Z1 Z2 Z3 Z4
Time(s) 76 94 150 275 355
MSE 2.3846 2.1732 2.0506 2.2506 20.34
RMSE 1.5442 1.4742 1.432 1.5002 4.5107
MAPE(%) 0.9197 0.9008 0.828 0.9958 3.4684

appear for the configuration with 50 hidden units in the
LSTM layer. The computation time is relevant for the test
computer with an 3.4 GHz i7 quad core processor and 16GB
RAM and the algorithms running under MATLAB R2018a
software environment from MathWorks, which is widely used
by engineers and scientists in industry and academia for a
range of applications, including deep learning and machine
learning, signal processing and communications.

Figure 6 illustrates the evolution of the RMSE metric over
the training horizon of 200 epochs for the best and worst case
scenarios. The outcome is illustrated on the Zurich dataset
where the best results are yielded in the Z2 - 50 units in the
hidden layer. The worst training results have been achieved
in the Z4 - 125 units in the hidden layer configuration and it
can be seen how the RMSE bounces back and forward over
the training horizon due to overfitting of the dataset by the
complex network structure. The best algorithm converges to a
minimum test RMSE value in under 100 iterations while for
the worst case convergence to a higher test RMSE minimum
value is achieved in around 120 iterations.

V. CONCLUSIONS
The paper presented an approach to apply deep learning

techniques to the problem of energy consumption prediction
of large commercial buildings. The technique of choice uses
recurrent neural networks with a layer of LSTM units of vary-
ing dimension. The presented case study is replicable given
the usage of open benchmarking datasets on two reference
university buildings. We investigate the results in terms of net-
work complexity and identify a suitable network structure that
achieves the best accuracy on the input data sets while avoiding
overfitting the data. The models that were implemented and
evaluated are suitable for online optimisation provided with
the right data streaming and computing infrastructure.

As there are many types of models that can be applied
depending on the data and the underlying processes, building
characteristics and consumption patterns, the final choice can
also be guided through domain expertise. Further research is
currently underway to use one the derived black-box models
within predictive control algorithms that allow the imple-
mentation of load management strategies e.g. by modulating
chiller output power in conjunction to high energy prices,
weather variations or other unexpected events. Also on-site
energy storage can bring significant benefits to the energy
management strategy with increased problem complexity.
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